RUBRIC FOR REDOX CALCULATION EXAMPLE CALCULATIONS.

Part 1, balancing the reaction.

$$Fe^{2+} + KMnO_4 + H^+ \rightarrow Fe^{3+} + MnO + H_2O + K$$

FIRST- Calculate the oxidation state of *EACH* element in each compound.

$$Fe^{2+}$$
 + KMnO₄ + H⁺ \rightarrow Fe^{3+} + MnO + H₂O + K⁺
2+ 1+ 7+ 2- 1+ 3+ 2+ 2- 1+ 2- 1+

SECOND- IDENTIFY THE OXIDATION AND REDUCTION HALF REACTIONS.

THIRD-BALANCE HALF REACTIONS

$$Mn^{7+} \rightarrow Mn^{2+}$$
 $5e^{-} + Mn^{7+} \rightarrow Mn^{2+}$ $5e^{-} + Mn^{7+} \rightarrow Mn^{2+}$ $Fe^{2+} \rightarrow Fe^{3+}$ $Fe^{2+} \rightarrow Fe^{3+} + 1e^{-}$ $5Fe^{2+} \rightarrow 5Fe^{3+} + 5e^{-}$

FOURTH- ADD ANY COEFFICIENTS YOU USED TO CANCELL ELECTRONS IN THE HALF REACTIONS (the red fives) TO THE NET REACTION.THE REACTION IS NOW BALANCED ELECTRONICALLY – BUT YOU ARE NOT DONE!

$$5Fe^{2+} + KMnO_4 + H^+ \rightarrow 5Fe^{3+} + MnO + H_2O + K^+$$

FIFTH- BALANCE BY REGULAR INSPECTION METHOD.

$$5Fe^{2+} + KMnO_4 + 6H^+ \rightarrow 5Fe^{3+} + MnO + 3H_2O + K^+$$